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Abstract

We applied a spectrum of uncertainty quantification (UQ) techniques to the study

of a two-dimensional soil-foundation-structure-interaction (2DSFSI) system (obtained

from Professor Conte at UCSD) subjected to earthquake excitation. In the process we

varied 19 uncertain parameters describing material properties of the structure and the

soil. We present in detail the results for the different stages of our UQ analyses.

1 Problem Definition

The structure is two-story two-bay reinforced concrete frame. The foundations consist of

reinforced concrete squat footings at the bottom of each column. The soil is a layered clay,

with stiffness properties varying along the depth (see Figure 1, Courtesy of Professor Conte

and Dr. Quan Gu at UCSD).

The frame consists of two stories each of height h = 3.6m and L = 20m across (hori-

zontal direction). The columns are modeled using displacement-based Euler-Bernoulli frame

elements with distributed plasticity, each with 4 Gauss-Legendre integration points. Foun-

dation footings and soil layers are modeled through isoparametric four-node quadrilateral

finite elements with bilinear displacement interpolation. The constitutive behavior of the

steel reinforcement is modeled by using a one-dimensional J2 plasticity model with both

∗This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore

National Laboratory under Contract No. DE-AC52-07NA27344.
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Figure 1: A 2D soil-foundation-structure-interaction system

kinematic and isotropic linear hardening. The concrete is modeled by using a Kent-Scott-

Park model with zero tension stiffening. Different material parameters are used for confined

(core) and unconfined (cover) concrete in the columns. The soil is modeled by using a

pressure-independent multi-yield surface J2 plasticity material model, specialized for plane

strain analysis. Different material parameters are used for each of the four layers considered.

The soil under a condition of simple shear has its bottom nodes fixed and the corresponding

boundary nodes at same depth tied together. The node of the beam (3 degrees of freedom)

and the corresponding node on the foundation concrete block (2 degrees of freedom), at the

same location, are tied together in both the horizontal and vertical directions.

After static application of the gravity loads, the structure is subjected to a base excitation

taken as three times the recorder data of the 1940 Elcentro earthquake, as shown in in Figure

2.

Uncertainties in the model parameters translate into uncertainties in the output responses

of interest. In this report we study the effect of uncertainties in the soil and structure material

parameters on the drift uncertainties under seismic excitation. The 19 material parameters

are listed in Table 1 and the parameter correlations are given in Table 1. The parameters

distributions are provided to us by Professor Conte and colleagues at UCSD.

The responses of interest in our study are:

inter-story drift ratios (IDR) : (Response 1 and 2) defined as

IDR =
maximum absolute inter-story drift

story height

Roof drift ratio (RDR) : (Response 3) defined as

RDR =
max absolute X displacement at roof

building height
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Figure 2: Fault component (3X) of 1940 Elcentro earthquake

Maximum floor acceleration (MFA): (response 4) computed by taking the second deriva-

tive of the horizontal displacement.

2 Introduction to Uncertainty Quantification

Uncertainty quantification (UQ) is a scientific discipline that conducts research and devel-

opment of methodologies and mathematical methods to help

• Characterize the output uncertainties of a simulation model given parameter and model

uncertainties (uncertainty assessment, forward propagation of uncertainties),

• Identify the major sources of uncertainties of a model (sensitivity analysis),

• Establish the integrity of a simulation model (validation),

• Tune a simulation model to match better with experiments (calibration),

• Assess the region of the validity of a simulation model (reliability/risk analysis),

• Provide information on which additional experiments are, needed to improve the un-

derstanding of a model,

and others.

To accomplish the goals of UQ, many computer experiment design and analysis tools are

needed. In this section we describe a few mathematical/statistical tools for UQ, with primary
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Table 1: Material parameters

Parameter Distribution Mean standard deviation

Upper fc Lognormal 27588.5 0.2 * Mean

Cover ec0 Lognormal 0.002 0.2 * Mean

Concrete ecu Lognormal 0.008 0.2 * Mean

Upper fc Lognormal 34485.6 0.2 * Mean

Core fcu Lognormal 20691.4 0.2 * Mean

Concrete ec0 Lognormal 0.004 0.2 * Mean

ecu Lognormal 0.014 0.2 * Mean

Upper E Lognormal 2.0e8 0.033 * Mean

Steel Sy Lognormal 248200 0.106 * Mean

Hkin Lognormal 1.613 0.2 * Mean

Foundation E Lognormal 2.0e7 0.2 * Mean

Soil G Lognormal 54450 0.3 * Mean

Layer #1 τmax Lognormal 33.0 0.25 * Mean

Soil G Lognormal 33800 0.3 * Mean

Layer #2 τmax Lognormal 26.0 0.25 * Mean

Soil G Lognormal 61250 0.3 * Mean

Layer #3 τmax Lognormal 35.0 0.25 * Mean

Soil G Lognormal 96800 0.3 * Mean

Layer #4 τmax Lognormal 44.0 0.25 * Mean

Table 2: Material parameter correlations

Parameter Parameter Correlation

fc (core) fc (cover) 0.8

Ec0 (core) Ec0 (cover) 0.8

Ecu (core) Ecu (cover) 0.8

Ec0 (core) Ec0 (core) 0.8

fc (core) fcu (core) 0.8

Ec0 (cover) Ecu (cover) 0.8

Ec0 (core) Ecu (cover) 0.64

Ecu (core) Ec0 (cover) 0.64

fcu (core) fc (cover) 0.64

G (# 1) τmax (# 1) 0.4

G (# 2) τmax (# 2) 0.4

G (# 3) τmax (# 3) 0.4

G (# 4) τmax (# 4) 0.4

τmax (# 1) τmax (# 2) 0.4

τmax (# 2) τmax (# 3) 0.4

τmax (# 3) τmax (# 4) 0.4
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focus on the sampling-based or non-intrusive techniques for global sensitivity analysis and

failure analysis.

Prior to performing any uncertainty sensitivity analysis on a model, much diligence is

required to compile a detailed model specification, since results concluded from the analysis

are valid only with respect to the given model specification. The specification may include

the model geometry, code version, input parameters (for example, material strength param-

eters), algorithmic parameters (for example, the grid resolution or convergence tolerances),

simulation output responses, and any other assumptions about the model.

2.1 Global Sensitivity Analysis

Global SA analysis studies the effects of the variations of inputs on the model outputs in

the allowable ranges of the input space. Saltelli et al. [8] have defined global methods by

two properties:

1. The inclusion of influence of scales and shapes of the probability density functions for

all inputs.

2. The sensitivity estimates of individual inputs are evaluated while varying all other

inputs (multi-dimensional averaging).

A common method for measuring sensitivities is variance decomposition which apportions

the total output variance to each individual input. For high dimensional (large number of

uncertain inputs) models, several approaches can be useful: (1) make linearity or monotonic-

ity assumptions about the model output behavior and apply classical regression analysis; (2)

create an approximate response function directly on the high dimensional problem and per-

form variance decomposition on it; and (3) perform screening to identify a subset of the most

important inputs, create an response function for the lower dimensional problem and apply

variance decomposition.

The rationale for approach (2) is that if most of the input parameters have negligible

effect on the output, a high-dimensional response function is almost as good as the response

function for the down-selected set of inputs, provided that a good sampling design is used

(The unimportant parameters amount to introducing noises to a lower dimensional prob-

lem). This approach often uses Gaussian process-based Bayesian methods. The rationale

for approach (3) is that when there is a lack of prior information on the output behavior,

it makes sense to perform a qualitative analysis followed by a quantitative analysis on the

reduced (smaller number of parameters) problem. We will introduce these approaches in the

following.

2.1.1 Regression-based Sensitivity Analysis

Regression analysis concerns developing a mathematical model relating the inputs and model

outputs, and then evaluate how good the model is. Strictly speaking, regression analysis is
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not statistical in nature, since it involves only numerical linear algebra. Both linear and

nonlinear regression analyses have found widespread uses in applications. As a result of

linear regression analysis, a quantity called standardized regression coefficients (SRCs) can

be computed. When the inputs are independent and the model is linear, the absolute value of

the SRCs can be used as a measure of importance. To verify that linear regression provides

acceptable fitting of data, the fitting errors should be carefully analyzed. The fitting is

considered to be acceptable if the error distribution is Gaussian-like with small standard

deviation. A quantity called adjusted R2 can also be used to judge the quality of linear fit.

SRCs are poor indicators when the underlying relationships are nonlinear. However, if

the relationships are monotonic, the rank transformation can be used to linearize the input-

output relationships. In rank transformation, the smallest value of each variable is given

a rank of 1, and equal values are given averaged ranks. The regression analysis applied to

the rank-transformed data yields the standardized ranked regression coefficients (SRRCs),

which measure the strength of monotonic relationship between the variables. Random and

quasi-random samples can be used to compute the SRCs and SRRCs.

2.1.2 Bayesian Sensitivity Analysis

In [6], Bayesian inferences has been advocated as a viable approach to analyzing sensitivities.

In this scenario the model is considered as an unknown function until it has been evaluated

given a design point. The approach begins with an assumed prior distribution for the model.

This prior distribution is subsequently updated using sampling together with the Bayesian

paradigm. This gives a posterior distribution which can be used to make inferences about

the sensitivity measures. A popular prior distribution is in the form of a Gaussian process

(GP). A key requirement to use Gaussian processes is that the model is a smooth function

of its input (uncertain) parameters.

A GP model is determined by its mean and covariance functions. The mean can be

defined by specifying the regressor functions (to express prior beliefs about input-output

relationships) as well as the corresponding weights (say β, which is a vector) . The covariance

function, in the simplest case, can be represented by a correlation function (to express

prior beliefs about the smoothness of the model output) and a few other parameters (called

hyperparameters). Thus, the Bayesian approach has the advantage that the associated

GP allows for incorporation of uncertainties via the hyperparameters. To estimate these

hyperparameters, the model has to be run on a carefully selected set of sample points which

should be selected to give good information about the model behavior over the parameter

space. In practice, when little is known about the model behavior over the parameter space,

a space-filling space should be used. The detailed mathematics of forming the GP can be

found in [6].

GP-based sensitivity analysis can be applied directly to a high dimensional model without

the multiple steps as described next, provided that the model output is a sufficiently smooth

function of its inputs and the number of important parameters is a small percentage of the

6



total number of parameters while all unimportant parameters have negligible effects. For

high-dimensional models with unknown smoothness, we strongly recommend using multi-

stage (to be described next) Bayesian sensitivity analysis, i.e. use GP-based screening for

parameter down-select and then GP-based variance decomposition on the subset of important

parameters.

GP-based methods do have the disadvantages that the estimation of the hyperparam-

eters can be difficult and computationally expensive for large sample size. In addition, a

requirement for the GP algorithms to work is that the covariance matrices created in the

optimization stage are positive definite (all eigenvalues greater than zero). Based on our

limited experience, many GP algorithms do frequently encounter indefinite covariance ma-

trices at the internal optimization steps. Remedies such as inexact decomposition of the

covariance matrices have been proposed although not much is known about their effect on

the results.

In Bayesian framework, GP-based methods are not the only methods available. Artificial

neural network (ANN), multivariate splines and support vector machine (SVM) can also

be considered as Bayesian method since the kernel in this methods can be viewed as prior

information and their coefficients are posterior information derived from the sample data.

2.1.3 Multi-step Sensitivity Analysis

Multi-step sensitivity analysis has been proposed and applied in several applications [8, 9].

A multi-step SA comprises a four-step process for high dimensional models.

1. Construct a complete description of the input parameters (that is, the ranges and forms

of the distributions).

2. If the number of uncertain input parameters is relatively small (say, less than 10), skip

to Step (3). Otherwise, perform a down-select screening analysis on all uncertain

parameters. There are several alternatives to the choice of screening methods. We

recommend using two or more screening methods to confirm the results.

3. If the simulation is computationally intensive and the output response is a “relatively”

smooth function of the uncertain inputs, we should consider using response surfaces

(other names are: surrogate functions, emulators) to construct approximate models.

4. Perform a quantitative sensitivity analysis via variance decomposition techniques.

Step (2) above is a coarse sensitivity analysis seeking to identify qualitatively a subset

of the most sensitive parameters. If there is no prior knowledge of the smoothness of the

function output, this coarse analysis may incur errors, which may be classified as Type I or

Type II. Type I errors occur when the analysis mistakenly identifies unimportant parameters

as important ones. Type II errors, which is more serious, results when important parameters

are identified as unimportant ones. It is therefore recommended (also by Oakley and Hagan
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[6]) that, rather than relying on just one single screening approach, multiple measures are

used in this step.

2.2 The Morris Screening Method

The Morris method is an effective screening method for large number of uncertain parame-

ters. To generate the Morris design, a base sample point X (1) is created such that each of the

M (M is the number of input parameters) components of X (1) is randomly selected from the

set {0, 1/(p−1), 2/(p−1), · · · , 1}, where p is a pre-selected integer (for example, p = 4). The

second sample point X (2) is created from X (1) by perturbing one of its inputs by ∆ which

is a pre-selected multiple of 1/(p − 1). Subsequent sample points X (i), i = 3, · · · ,M + 1

are created in a similar way, namely from X (i−1) by perturbing one of its inputs which has

not been perturbed before. After perturbing all inputs, we have M + 1 sample points. A

necessary condition to satisfy in generating the sample points is that all X (i) lie in the design

space (for example, [0, 1]M ).

This process is captured in the following mathematical form:

B∗ = (JM+1,1X
(1) + (∆/2)[(2B − JM+1,M )D + JM+1,M ])P (1)

where B∗ is an (M + 1) × M normalized design matrix (each row is one normalized sample

point), Jm,n is an m × n matrix of all 1’s, D is an M × M diagonal matrix in which each

diagonal element is either +1 or −1 with equal probability, X (1) is a row vector having the

base sample, P is an M × M permutation matrix, and

B =























0 0 0 · · · 0

1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0

· · · · · · · · · · · · · · ·

1 1 1 1 1























.

To ensure this design creation process is a random selection from the distribution of

elementary effect (to be defined later), the process uses three randomizations: (1) the base

sample point is randomly selected, (2) the direction of the perturbation is random (that

is, the creation of D), and (3) the choice of which input to perturb next is a randomized

process (reflected by P ). After B∗ has been generated, this normalized sample has to be

mapped onto the actual parameter ranges and distributions before running them through

the simulations. This procedure is repeated R − 1 times (for example, R = 10) to ensure

enough regions in the design space has been explored.

After these sample points have been evaluated, the elementary effects for the inputs can

then be calculated by:

dc(k) =
f(Xk) − f(Xk−1)

∆
, k = 2, · · · ,M + 1 (2)
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where dc(k) is defined as the elementary effect for input c(k) (c maps k to its true input

number). Note that since we randomly select which input to perturb next, the elementary

effect computed using the k-th and (k + 1)-th points in general is not the elementary effect

for the k-th input which explains the c(k) mapping.

Now that we have R elementary effects for each input (let’s label them dr
i for input i

and replication r.) Morris proposed two sensitivity measures to analyze the data: µ which

estimates the overall effect of each input on the output, and σ which estimates the higher

order effects such as nonlinearity and interactions between inputs. The formulas for them

are:

µi =
1

R

R
∑

r=1

dr
i , and σi =

√

∑R
r=1(d

r
i − µi)2

R
, (3)

respectively. Campolongo el al. [8] proposed an improved measure µ∗ in place of µ where

µ∗
i =

1

R

R
∑

r=1

|dr
i |. (4)

If µ∗
i is substantially different from zero, it indicates that input i has an important

“overall” influence on the output. A large σi implies that input i has a nonlinear effect on

the output, or there are interactions between input i and the other inputs.

2.3 Response Surface Methods

Response surface methodology (RSM) is a collection of statistical and mathematical tech-

niques useful for developing, improving, and optimizing processes [5]. The original definition

of RSM pertains to linear and polynomial regression analyses. We broaden the term RSM to

include all function approximation methods. Provided that the model response Y is smooth

enough, RSM can be very helpful in reducing the computational cost for uncertainty anal-

ysis. The idea is to create a set of sample points that are space-filling and use them to

train a response surface model (or a function approximator). The choice of response surface

methods for a given simulation model depends on the knowledge about the simulation model

itself. If the model output is known to be a linear mapping of its uncertain inputs, then a

first-order regression model suffices. If no such knowledge is available about the mapping,

more general nonparametric models such as splines, neural network, or GP models may be

more appropriate. Inference about new data points (N + 1, · · · , N + k) from the already

evaluated sample points (1, · · · , N) can be expressed mathematically as:

P (YN+k|XN+k) = F (X1, · · · , XN , Y1, · · · , YN , Φ)

which states that probability of the output being YN+k given XN+k is a function of the

evaluated sample of size N and the approximation method Φ.

Once a good response surface model has been constructed with sufficient accuracy (via

rigorous validation and/or cross validation), subsequent analysis can rely on this response
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surface model which is inexpensive to evaluate. This will facilitate the efficacy of the more

quantitative analyses that require a large number of evaluations.

2.4 Variance Decomposition

So far the effort has been on identifying important parameters qualitatively. This section

focuses on using variance to quantify input importance. The analysis techniques based on

regression coefficients, correlation coefficients and their variants have limited applicability

since they assume that the model is nearly linear or monotonic. Our attention is mainly

on variance-based measures such as correlation ratio and Sobol’/Saltelli sensitivity indices

which are less restrictive on the models. For applications with uncorrelated inputs, it is

based on the full decomposition of the model variance V (Y ) (another notation for σ2) into

V (Y ) =
∑

i

Vi +
∑

i<j

Vij +
∑

i<j<k

Vijk + · · · + V12···M (5)

where Vi = V (E(Y |Xi)), Vij = V (E(Y |Xi, Xj)) − Vi − Vj, and so on. The total number of

terms for M inputs is thus 2M − 1. In the present context, we are interested in the main

effects (Vi), two-way interactions (Vij) and total effect STi
.

The main effect analysis is due to McKay [2]. The essence of this analysis is the statis-

tical measure called variance of condition expectation. Again, let E(Y ) and V (Y ) be the

prediction mean and variance of an output variable Y , statisticians can tell us that

V (Y ) = V (E(Y |Xi)) + E(V (Y |Xi)) (6)

where Xi is the i-th input. Here the first term on the right hand side is the variance of the

conditional expectation of Y , conditioned on Xi; and the second term is an error or residual

term.

We can extend the main effect analysis to two-way interaction studies (or second-order

sensitivities) for uncorrelated inputs [8, 10]. In this case, we use the following relationship

V (Y ) = V (E(Y |Xi, Xk)) + E(V (Y |Xi, Xk)) (7)

where Xi and Xk are two distinct inputs under consideration. The first term on the right

hand side is the variance of the conditional expectation of Y , conditioned on Xi and Xk.

Again, the second term is the error or residual term measuring the estimated variance of Y

by fixing Xi and Xk.

Finally, another measure that may be useful in the case of correlated inputs is the total

sensitivity index STi
for input i which is defined as

STi
= Vi +

∑

i6=j

Vij +
∑

i6=j,i6=k

Vijk + · · · + V12···M . (8)

All these measures can be computed using different numerical integration techniques.
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2.5 Reliability/Failure Analysis

As a result of uncertainties in the model or input parameters, a finite probability may exist

that a certain system will fail to deliver acceptable performance. Failure analysis is often

needed to assess the reliability of the system. When there is a lack of information about

the model behavior in the parameter space, this analysis will involve exploring the space

thoroughly to identify failure regions and quantify the failure probability. This may be

computationally intensive especially for high dimensional problems. When there is some

prior information about the output distribution, Bayesian methods can be used to obtain

the posterior distribution. Other smart methods such as the first order reliability method

(FORM) are frequently used to reduce the computational cost.

We have also developed an adaptive sampling method to geometrically zoom into the

threshold region. Our method employs a geometric adaptivity (as opposed to importance

sampling in statistics) suitable for problems with medium dimensions (e.g. 2-10). The

adaptive sampling is guided by formulating a utility function in the form of:

{Xn+1, Xn+2, ..., Xn+m} = U({X1, X2, ..., Xn}, {Y1, X2, ..., Yn}, θ, S)

where θ is the reliability threshold and S is the sampling strategy. Our method, as with

many other methods, assumes that the model output is a continuous function of the uncertain

inputs. In addition, smoothness of the function will help to accelerate the method. Users

have to provide an initial sample size and the threshold. The algorithm divides the parameter

space into regions, evaluates each region based on simulation outputs, and tags the regions

that need to be refined. This process continues until the results meet a certain convergence

criterion.

2.6 The PSUADE Software Package

To be able to perform designed simulation experiments like the ones used in uncertainty

quantification, many detailed tasks such as setting up the test problem, negotiating the

computational resources, extracting and processing the appropriate outputs for examination,

packaging the outputs for visualization, applying the analysis tools, optimizing the responses,

interpreting the results, etc. are involved. To simplify these tedious bookkeeping chores, we

have developed PSUADE (short for Problem Solving environment for Uncertainty Analysis

and Design Exploration), an integrated software environment, to facilitate the analysis.

PSUADE supports a user-friendly interface via input and output filters. PSUADE provides

a rich collection of sampling designs. Once a sampling design has been created, PSUADE

systematically feeds the design points into parameter files and calls a user handler, which

absorbs the sample data and inserts them into the model input files. The user handler then

requests computational resource for the evaluation, waits for its completion, and extracts

the output data from the model output files. This protocol allows all information exchange

to be done via a user-written handler. There is no need to change the simulation source
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code to accommodate the analysis, and it is sometimes called a “non-intrusive” interface.

The results can be analyzed using PSUADE’s rich collection of response surface and analysis

tools. PSUADE also creates ‘Matlab’ files for data visualization.

3 Numerical Experiments

3.1 Problem Definition

The original parameter distributions provided to us are lognormal distribution with some

parameter correlations. In our preliminary numerical study we instead use uniform distri-

butions with bounds at ±σ (one standard deviation) and no correlation for all parameters

(Table 3.1). Each run takes about one minute on our Linux desktop.

Table 3: Material parameters

Parameter Distribution Mean range

Upper fc Uniform 27588.5 ±0.2 * Mean

Cover ec0 Uniform 0.002 ±0.2 * Mean

Concrete ecu Uniform 0.008 ±0.2 * Mean

Upper fc Uniform 34485.6 ±0.2 * Mean

Core fcu Uniform 20691.4 ±0.2 * Mean

Concrete ec0 Uniform 0.004 ±0.2 * Mean

ecu Uniform 0.014 ±0.2 * Mean

Upper E Uniform 2.0e8 ±0.033 * Mean

Steel Sy Uniform 248200 ±0.106 * Mean

Hkin Uniform 1.613 ±0.2 * Mean

Foundation E Uniform 2.0e7 ±0.2 * Mean

Soil G Uniform 54450 ±0.3 * Mean

Layer #1 τmax Uniform 33.0 ±0.25 * Mean

Soil G Uniform 33800 ±0.3 * Mean

Layer #2 τmax Uniform 26.0 ±0.25 * Mean

Soil G Uniform 61250 ±0.3 * Mean

Layer #3 τmax Uniform 35.0 ±0.25 * Mean

Soil G Uniform 96800 ±0.3 * Mean

Layer #4 τmax Uniform 44.0 ±0.25 * Mean

3.2 Regression Analysis

We applied linear regression analysis to compute the standardized regression coefficients

(SRC’s). We used an orthogonal array sample of size equal to 361. The results of this
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analysis are valid if the responses are linear with respect to the input variables. For the 4

responses of interest, we obtained the adjusted R2 of 0.92, 0.9, 0.93 and 0.77, respectively.

The R2’s indicate that linearity assumptions may be valid for response 1, 2, and 3 (the two

IDR’s and RDR), but inadequate for response 4 (MFA). We plot the SRC’s in Figure 3.
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Figure 3: Standardized regression coefficients for the 4 responses of interest

Based on the above results, we have identified the following 5 parameters as important:

τmax,3 (parameter 17), τmax,4 (19), σY (9), fc (1), and Ec0 for the cover concrete (2).

3.3 Morris Screening Study

We applied screening analysis to identify qualitatively important parameters with respect

to the responses of interest. We used the enhanced Morris sampling design with sample size

N = 600 (usually N = 200 suffices, but we used larger N here since the simulation time is

short). The normalized modified gradients due to the Morris analysis are shown in Figure

4. A large relative magnitude for a given input indicates its importance.

The conclusions from the Morris screening are that: for all the responses of interest,

(1) the soil parameters τmax,3 and τmax,4 (parameters 17 and 19) are the most important;

(2) the steel parameter σY (parameter 9) is important; and (3) the upper structure cover

parameters fc and Ec0 (parameter 1 and 2) are important. These agree well with results

from regression analysis.
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Figure 4: Parameter sensitivities for the 4 responses of interest

For more insights into the Morris analysis, we also present the Morris scatter plots (for

individual gradients for each input) in Figure 5.

In Figure 5 we observe a wide spread of gradients for input 17 and 19 (the two τmax’s). For

these two inputs, we further observe that, despite the large spreads of gradients, the spreads

for triangles with same colors are relatively small (Triangles of same colors correspond to

gradients with same values of the input). This means the spread is primarily due to the

nonlinear effect of the individual inputs. We also applied variable resolution technique to

study the screening sensitivities at a finer resolution (p = 7 and N = 600), and we found

that the screening diagrams and scatter plots are essentially the same, implying that the

current sampling resolution is adequate.

3.4 Response Surface Analysis

We applied a response surface methodology to the problem in the domain spanned by the

ranges of the 5 parameters identified in the last section. To ensure a thorough exploration

of the parameter space, we used a mixed design combining a 5-dimensional full factorial

design of resolution 4 (to cover the corners and sides) together with about 800 (this number

is arbitrary) runs of the LP-τ design. We used the full factorial design together with about

400 LP-τ runs as the training set; and withheld the remaining 400 LP-τ runs as the test

set. We used the multivariate adaptive regression splines (MARS) [1] software library as the
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Figure 5: Morris scatter plots for the 4 responses of interest

function approximator. In Figure 6 we show the histogram of prediction error for the four

different responses of interest. We observe that all except the last response give acceptable

prediction errors. Therefore, our subsequent analysis will be limited to these three responses.

The response surface plots for the four responses of interest are given in Figure 7 to 10

as a function of the three most important parameters- τ3, τ4 and cover fc. We observe that

the first three responses of interest vary much more significantly in the τ3 (X) and τ4 (Y)

dimensions, but vary little in the cover fc (Z) dimension demonstrating that τ3 and τ4 are the

most important parameters. The response surface plot for the maximum floor acceleration

appears to be nonsmooth, with a maximum prediction error of 60%.

3.5 Variance Decomposition Study

We performed variance decomposition on the response surfaces for the inter-story drifts and

the roof drift ratio created in the last section. Using the approximate functions that are

inexpensive to evaluate, we computed the first order sensitivity indices for the 5 parameters.

For the current analysis we use uniform distributions and no correlation for all parameters.

The breakdown of the total variance is given in Figure 11. We observe that τ3 and τ4

account for most of the output variances. Also, τ3 by itself has a more significant effect

on the first inter-story drift than the second. Note also that that the sums of all first
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Figure 6: Histogram of prediction errors for the 4 responses of interest
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Figure 7: 3D response surface plot for maximum first inter-story drift
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Figure 8: 3D response surface plot for maximum second inter-story drift
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Figure 9: 3D response surface plot for maximum roof drift ratio
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Figure 10: 3D response surface plot for maximum floor acceleration

order sensitivities are less than 1. This may be due to errors in the sensitivity indices as

a result of finite sampling, and/or the presence of a small amount of interactions. Using

multi-resolution analysis, we concluded that the error due to finite sampling is small (as

indicated in the lower right plot in Figure 11, which shows the measure essentially converges

for the 4 different resolutions. We also computed the second order sensitivity indices for

pairs of parameters (Figure 12), which indicated that the remaining variance is mainly due

to interaction between τ3 (parameter 4) and τ4 (parameter 5).

The total sensitivity indices for the 5 parameters are given in Table 3.5.

Table 4: Total sensitivity indices for inter-story and roof drifts

Input 1st story drift 2nd story drift roof drift

1 0.028 0.023 0.022

2 0.014 0.015 0.013

3 0.012 0.025 0.012

4 0.424 0.275 0.320

5 0.576 0.761 0.705
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3.6 Bayesian Sensitivity Study

The regression analysis above suggests that the first 3 responses may be smooth functions

of the uncertain parameters. So, in addition to applying the multi-step sensitivity analysis,

we also performed direct variance decomposition on the 19-parameter problem. We used the

same sample design as in regression analysis, namely, orthogonal array with sample size 361

and strength 2. We used the sample input and output data to create a response function

using Gaussian process. Unfortunately, the two Gaussian process software packages that

we selected, Mackay’s Tpros ([3]) and Rasmunssen’s GP, complained about encountering

indefinite covariance matrices. We thus resorted to using MARS ([1]) to fit the data. We

performed variance decompositions on the MARS-based response functions, the result of

which are given in Table 3.6.

Table 5: First sensitivity indices for inter-story and roof drifts

Input 1st story drift 2nd story drift roof drift

VCE (A) VCE (B) VCE (A) VCE (B) VCE (A) VCE (B)

1 0.028 0.028 0.022 0.023 0.022 0.021

2 0.014 0.011 0.015 0.014 0.012 0.010

3 —– 0.000 —– 0.000 —– 0.000

4 —– 0.002 —– 0.000 —– 0.001

5 —– 0.000 —– 0.000 —– 0.000

6 —– 0.001 —– 0.000 —– 0.000

7 —– 0.000 —– 0.000 —– 0.000

8 —– 0.003 —– 0.002 —– 0.002

9 0.009 0.008 0.021 0.021 0.011 0.012

10 —– 0.000 —– 0.000 —– 0.000

11 —– 0.000 —– 0.000 —– 0.000

12 —– 0.003 —– 0.002 —– 0.001

13 —– 0.003 —– 0.000 —– 0.001

14 —– 0.002 —– 0.001 —– 0.002

15 —– 0.003 —– 0.001 —– 0.001

16 —– 0.000 —– 0.000 —– 0.000

17 0.368 0.380 0.182 0.190 0.252 0.257

18 —– 0.000 —– 0.001 —– 0.000

19 0.521 0.502 0.663 0.665 0.637 0.636

’—–’ measures not computed

’VCE(A) : first order sensitivities from multi-step method

’VCE(B) : first order sensitivities from direct method
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In the tables we also included the first order sensitivity indices computed from the multi-

step approach. Here we observe that the results from both approaches match quite well. We

attribute this to the highly smooth nature of the three model responses under study.

3.7 Uncertainty Analysis

We have shown that the response surfaces for the first three responses of interest are ade-

quate. In this section we use the response surfaces to compute some uncertainty measures.

To compute the basic statistics we probed the response surfaces with Latin hypercube sam-

ples of size 200000. The histograms showing output distributions are given in Figure 13.

The statistical numbers are given in Table 3.7 (The kurtoses have not been offset.)
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Figure 13: Histograms for the uncertainties of 3 responses of interest

3.8 Reliability Analysis

To demonstrate our adaptive sampling capability for reliability analysis, we applied our tool

to the study of roof drift ratio. We artificially prescribed the reliability threshold to be

0.15 and observed our algorithm zooming in around the threshold region. Our convergence

criterion is such that two consecutive refinements give reliability measures that differ by less

than 0.1%. Our algorithm used 7 levels of adaptive refinement with a total sample size of

1434 giving a final reliability of 93.4%. From our experiences with other problems, it would

have taken > 10X more sample points if non-adaptive sampling is used.
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Table 6: Uncertainty results for the three responses of interest

Measure 1st IDR 2nd IDR RDR

mean 0.0664 0.0613 0.1240

standard deviation 0.0073 0.0093 0.0159

skewness 0.131 0.345 0.204

kurtosis 2.10 2.31 2.12

IDR - maximum inter-story drift ratio

RDR - maximum roof drift ratio

Table 7: Reliability analysis data for roof drift ratio

Level nSamples Reliability (%)

0 50 98.00

1 20 97.00

2 32 95.00

3 59 93.75

4 108 94.13

5 197 93.44

6 356 93.47

7 612 93.42

4 Summary

This document shows how to perform global sensitivity analysis and failure analysis for sci-

entific or engineering models. Different techniques may be viable depending on the nature

of the model outputs. Even though the regression and Bayesian-type analysis give accurate

sensitivity results for this high-dimensional problem, we recommend to validate the direct

approach with the multi-step approach, since the direct approach assumes highly smooth

functions. Screening methods are useful not only in sensitivity analysis, but also in reduc-

ing the number of parameters for other analysis such as failure analysis and optimization.

Response surface methods are essential in reducing the overall computational cost. The

essence of response surface methods are to fill in the space between the evaluated sample

data making certain continuity and smoothness assumptions. Variance decomposition is a

useful technique to attribute the output variability to individual inputs. Finally, we showed

that adaptive or importance sampling can be useful in reducing the cost of reliability analysis.

The current study emphasizes on robust uncertainty and sensitivity analyses. Future

work will move on to the 3D soil-foundation-structure interaction problem, which takes
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about an hour per run. For that problem, we will concern more about efficiency. We plan

to employ intelligent sampling to perform response surface and other statistical analyses.
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